Tag: mysql

Your SQL IS NOT JavaScript (neither PHP)

IS NULL, IS NOT NULL, truthiness among other assertions on MySQL and PostgreSQL

People like to complain about JavaScript, how can one thing be equal to the other, i.e. null == undefined evaluates to true unless you use the triple equals ===. Other dynamic typed languages have its peculiarities, such as Ruby where 0 == true evaluates to true, the reason for Ruby is that considers 0 as a value and any value evaluates to true.

How about SQL? The answer is… it depends.

Which database are you using?

Some may be more forgiving, like MySQL doing casts for you all over the place, or more strict like PostgreSQL where you can only compare the truthiness of something of the same type.

Assertion MySQL PostgreSQL
('A' = TRUE) IS TRUE 0 invalid input syntax for type boolean: “A”
('A' IS TRUE) IS TRUE 0 invalid input syntax for type boolean: “A”
(1 = TRUE) IS TRUE 1 operator does not exist: integer = boolean
(1 IS TRUE) IS TRUE 1 argument of IS TRUE must be type boolean, not type integer
('1' IS TRUE) IS TRUE 1 1
('0' IS FALSE) IS TRUE 1 1
(1 = '1') IS TRUE 1 1
(0 = '0') IS TRUE 1 1

Beyond the implications of wrong type comparison, as you can see on lines 1 through 4 where MySQL evaluates values as true or false, you should also worry about what the fact of a column being NULL may imply when comparing two columns.

Suddenly knowing if it is true or false doesn’t matter because you cornered yourself with a third possible value: NULL. By definition NULL is not a value neither a state, it should be considered “garbage”, and no column where you know its value and type would be garbage.

In this front both databases operate the same way:

Assertion SQL
(0 = NULL) IS NULL 1
(1 = NULL) IS NULL 1
('A' = NULL) IS NULL 1
(0 = NULL) IS TRUE 0

The highlighted parts are usually assumptions that people expect to behave differently, for example that zero is not equal to NULL. That catches many people by surprise. It shouldn’t catch you by surprise though, because 0 is a value. The default behavior of MySQL of casting NULL to 0, on a INTEGER NOT NULL column without a DEFAULT value taught a whole generation of developers that this assumption is true. The same applies when casting a string-based column that has no default value on a NOT NULL column to empty string.

Is that a spaceship operator?

While writing this post and taking a peek into MySQL documentation, I never noticed that a NULL-safe equal operator, <=>, existed, unfortunately the MySQL website only shows the documentation from 5.5 to 8.0, so I can’t be certain if this existed in prior releases.

1 = NULL,
1 <=> NULL;
Assertion MySQL
1 <=> NULL 0

The case where MySQL thinks it is PHP

Another behavior I discovered when doing some JOINs were the string and integer comparison. Both databases get SELECT 1 = '1'; as true, however, MySQL takes a step further:

SELECT 1 = '1a',
'1' * 3,
'1abc' + 4;
Assertion MySQL PostgreSQL
1 = '1a' 1 invalid input syntax for integer: “1a”
'1' * 3 3 3
'1abc' + 4 5 invalid input syntax for integer: “1abc”

Thus behaving like PHP. PHP is expected to change this behavior soon with this RFC. PostgreSQL, in this case, is forgiving in casting a string as an integer, only if there is an integer inside of the quotes. If you mix the integer with other characters, it throws an error as you can see above.

I Know!

No, I don’t. I thought I knew enough SQL. Apparently, I was wrong.

Independent of the language you are using, you should be aware that assertions that are true in your language may not be true in SQL and the other way as well.

Extending WordPress Dockerfile to use MySQL 5.7 (or 8.0)

Extending WordPress Dockerfile to use MySQL 5.7 (or 8.0)

Oracle’s website shows End of life for MySQL 5.5 as of Jan 20th of 2019, so hurry up and upgrade!

I am working building some demos for Cloud SQL and one of the requirements I had was to run MySQL 5.7 and WordPress as my sample application. The demo consisted on migrating from a single VM environment with WordPress and MySQL running alongside. The narrative: the site got popular and the database became the bottle neck because of all the shared resources between them and the application. The proposed solution? A minimal downtime migration to Cloud SQL, moving the data layer to a dedicated server.

I am going to be doing this demo a lot of times, so I needed some way to automate it. I thought of doing through Docker. I am not Docker proficient, and to begin with I asked Anthony for help to get me to what I wanted, but there are so many nuances! Maybe someone will find a better solution to it than this one, but I decided to share what I got.

Let’s examine the two scenarios I faced. All examples assume Debian/Ubuntu.

I don’t run Docker, just have a VM and want to have MySQL 5.7

In this case it’s straightforward: you need to use the MySQL official APT repository available in https://dev.mysql.com/downloads/repo/apt/.

At this time the most recent version is mysql-apt-config_0.8.12-1_all.deb, keep an eye before continuing this because it may change the version until you use this tutorial.

In line 2 you can change from mysql-5.7 to mysql-8.0, if unspecified the command, version 8.0 will be installed.

I run Docker and want to have 5.7 or 8.0 installed on it

It’s a bit similar to the previous situation, you still need to go to the APT repository page to know which file to download and add this on your Dockerfile:

Notice, you can also change the version of MySQL here. Don’t forget to pass DB_ROOT_PASSWORD​ when doing your docker build using the --build-arg argument. More details here.

It works!

These are the workarounds to avoid using MySQL 5.5. After that I was able to finally automate my demo. Feel free here to share better examples of what I did, as I said, I don’t have proficiency in the subject.

Replication from External Primary/Leader into GCP

Replication from External Primary/Leader into GCP

This is a post based on recent tutorials I published, with the goal of discussing how to prepare your current MySQL instance to be configured as an External Primary Server with a Replica/Follower into Google Cloud Platform.

First, I want to talk about the jargon used here. I will be using primary to represent the external “master” server, and replica to represent the “slave” server. Personally, I prefer the terms leader/follower but primary/replica currently seems to be more common in the industry. At some point, the word slave will be used, but because it is the keyword embedded on the server to represent a replica.

The steps given will be in the context of a VM running a one-click install of WordPress acquired through the Google Marketplace (formerly known as Launcher) .

To help prepare for replication you need to configure your primary to meet some requirements.

  1. server-id must be configured; it needs to have binary logging enabled; it needs to have GTID enabled, and GTID must be enforced. Tutorial.
  2. A Replication User must exist on the primary, remembering you may need root to create it
  3. A dump file must be generated using the mysqldump command with some information on it.

The steps above are also necessary if you are migrating from another cloud or on-prem.

Why split the application and database and use a service like Cloud SQL?

Cloud SQL
Cloud SQL

First, you will be able to use your application server to do what it was mainly designed for: serve requests of your WordPress application (and it doesn’t much matter for the purposes of this post if you are using nginx or Apache).

Databases are heavy, their deadly sin is gluttony, they tend to occupy as much memory as they can to make lookups fairly fast. Once you are faced with this reality, sharing resources with your application is not a good idea.

Next, you may say: I could use Kubernetes! Yes, you could, but just because you can do something doesn’t mean you should. Configuring stateful applications inside Kubernetes is a challenge, and the fact that pods can be killed at any moment may pose a threat to your data consistency if it happens mid transaction. There are solutions on the market that use MySQL on top of Kubernetes, but that would be a totally different discussion.

You also don’t need to use Cloud SQL, you can set up your
database replicas, or even the primary, on another VM (still wins when compared with putting the database and application together), but in this scenario you are perpetually risking hitting the limits of your finite hardware capabilities.

Finally, Cloud SQL has a 99.95% availability and it is curated by the SRE team of Google. That means you can focus your efforts on what really matters — developing your application — and not spend hours, or even days, setting up servers. Other persuasively convenient features include PITR (Point in Time Recovery) and High Availability in case a failover is necessary.

Setting up the replica on GCP

Accessing the menu SQL in your Google Cloud Console will give you a listing of your current Cloud SQL instances. From there execute the following:

  1. Click on the Migrate Data button
  2. Once you have familiarized yourself with the steps shown on the screen, click on Begin Migration
  3. In the Data source details , fill the form out as follows:
    1. Name of data source: Any valid name for a Cloud SQL instance that will represent the primary server name
    2. Public IP address of source: The IP address of the primary
    3. Port number of source: The port number for the primary, usually 3306
    4. MySQL replication username: The username associated with the replication permissions on the primary
    5. MySQL replication password: The password for the replication username
    6. Database version: Choose between MySQL 5.6 and MySQL 5.7. If you are not sure which version you are running, execute SELECT @@version; in your primary server and you will have the answer.
    7. (Optional) Enable SSL/TLS certification: Upload or enter the Source CA Certificate
  4. Click on Next

The next section Cloud SQL read replica creation, will allow you to choose:

  1. Read replica instance ID: Any valid name for a Cloud SQL instance that will represent the replica server name
  2. Location: choose the Region and then the Zone for which your instance will be provisioned.
  3. Machine Type: Choose a Machine Type for your replica; This can be modified later! In some cases it is recommended to choose a higher instance configuration than what you will keep after replication synchronization finishes
  4. Storage type: Choice between SSD and HDD. For higher performance choose SSD
  5. Storage capacity: It can be from 10GB up to 10TB. The checkbox for Enable automatic storage increases means whenever you’re near capacity, space will be incrementally increased. All increases are permanent
  6. SQL Dump File: Dump generated containing binary logging position and GTID information.
  7. (Optional) More options can be configured by clicking on Show advanced options like Authorized networks, Database flags, and Labels.
  8. Once you’ve filled out this information, click on Create.

The following section, Data synchronization, will display the previous selected options as well the Outgoing IP Address which must be added to your current proxy, firewall, white-list to be able to connect and fetch replication data. Once you are sure your primary can be accessed using the specified credentials, and the IP was white-listed, you can click on Next. After that replication will start.

Live demo

If you want to see this feature in action, please check this video from Google Cloud Next 2018: